3.2.77 \(\int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {13}{2}}(c+d x)} \, dx\) [177]

Optimal. Leaf size=323 \[ \frac {(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {8 a^2 (2155 i A+2167 B) \sqrt {a+i a \tan (c+d x)}}{3465 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)} \]

[Out]

(4+4*I)*a^(5/2)*(I*A+B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-8/3465*a^2*(2155*I*
A+2167*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(1/2)-2/99*a^2*(14*I*A+11*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*
x+c)^(9/2)+2/693*a^2*(212*A-209*I*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(7/2)+4/1155*a^2*(250*I*A+253*B)*(a
+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2)-8/3465*a^2*(655*A-649*I*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(3/
2)-2/11*a*A*(a+I*a*tan(d*x+c))^(3/2)/d/tan(d*x+c)^(11/2)

________________________________________________________________________________________

Rubi [A]
time = 0.78, antiderivative size = 323, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {3674, 3679, 12, 3625, 211} \begin {gather*} \frac {(4+4 i) a^{5/2} (B+i A) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (253 B+250 i A) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {2 a^2 (11 B+14 i A) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {8 a^2 (2167 B+2155 i A) \sqrt {a+i a \tan (c+d x)}}{3465 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(13/2),x]

[Out]

((4 + 4*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*
a^2*((14*I)*A + 11*B)*Sqrt[a + I*a*Tan[c + d*x]])/(99*d*Tan[c + d*x]^(9/2)) + (2*a^2*(212*A - (209*I)*B)*Sqrt[
a + I*a*Tan[c + d*x]])/(693*d*Tan[c + d*x]^(7/2)) + (4*a^2*((250*I)*A + 253*B)*Sqrt[a + I*a*Tan[c + d*x]])/(11
55*d*Tan[c + d*x]^(5/2)) - (8*a^2*(655*A - (649*I)*B)*Sqrt[a + I*a*Tan[c + d*x]])/(3465*d*Tan[c + d*x]^(3/2))
- (8*a^2*((2155*I)*A + 2167*B)*Sqrt[a + I*a*Tan[c + d*x]])/(3465*d*Sqrt[Tan[c + d*x]]) - (2*a*A*(a + I*a*Tan[c
 + d*x])^(3/2))/(11*d*Tan[c + d*x]^(11/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3674

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x]
)^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c
 + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m
 - 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && E
qQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {13}{2}}(c+d x)} \, dx &=-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {2}{11} \int \frac {(a+i a \tan (c+d x))^{3/2} \left (\frac {1}{2} a (14 i A+11 B)-\frac {1}{2} a (8 A-11 i B) \tan (c+d x)\right )}{\tan ^{\frac {11}{2}}(c+d x)} \, dx\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {4}{99} \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {1}{4} a^2 (212 A-209 i B)-\frac {1}{4} a^2 (184 i A+187 B) \tan (c+d x)\right )}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {8 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{4} a^3 (250 i A+253 B)+\frac {3}{4} a^3 (212 A-209 i B) \tan (c+d x)\right )}{\tan ^{\frac {7}{2}}(c+d x)} \, dx}{693 a}\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {16 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {3}{4} a^4 (655 A-649 i B)+\frac {3}{2} a^4 (250 i A+253 B) \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx}{3465 a^2}\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {32 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {3}{8} a^5 (2155 i A+2167 B)-\frac {3}{4} a^5 (655 A-649 i B) \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{10395 a^3}\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {8 a^2 (2155 i A+2167 B) \sqrt {a+i a \tan (c+d x)}}{3465 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {64 \int -\frac {10395 a^6 (A-i B) \sqrt {a+i a \tan (c+d x)}}{16 \sqrt {\tan (c+d x)}} \, dx}{10395 a^4}\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {8 a^2 (2155 i A+2167 B) \sqrt {a+i a \tan (c+d x)}}{3465 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}-\left (4 a^2 (A-i B)\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {8 a^2 (2155 i A+2167 B) \sqrt {a+i a \tan (c+d x)}}{3465 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}+\frac {\left (8 a^4 (i A+B)\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 (14 i A+11 B) \sqrt {a+i a \tan (c+d x)}}{99 d \tan ^{\frac {9}{2}}(c+d x)}+\frac {2 a^2 (212 A-209 i B) \sqrt {a+i a \tan (c+d x)}}{693 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4 a^2 (250 i A+253 B) \sqrt {a+i a \tan (c+d x)}}{1155 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 a^2 (655 A-649 i B) \sqrt {a+i a \tan (c+d x)}}{3465 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {8 a^2 (2155 i A+2167 B) \sqrt {a+i a \tan (c+d x)}}{3465 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{11 d \tan ^{\frac {11}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 11.35, size = 328, normalized size = 1.02 \begin {gather*} \frac {4 \sqrt {2} a^2 (i A+B) e^{-i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )}{d \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}}}-\frac {a^2 \csc ^3(c+d x) \sec ^2(c+d x) (66 (95 A-47 i B) \cos (c+d x)+(-5225 A+6743 i B) \cos (3 (c+d x))+3995 A \cos (5 (c+d x))-3641 i B \cos (5 (c+d x))+84810 i A \sin (c+d x)+84414 B \sin (c+d x)-42185 i A \sin (3 (c+d x))-43703 B \sin (3 (c+d x))+10925 i A \sin (5 (c+d x))+10571 B \sin (5 (c+d x))) \sqrt {a+i a \tan (c+d x)}}{27720 d \tan ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(13/2),x]

[Out]

(4*Sqrt[2]*a^2*(I*A + B)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))
]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])/(d*E^(I*(c + d*x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d
*x))))/(1 + E^((2*I)*(c + d*x)))]) - (a^2*Csc[c + d*x]^3*Sec[c + d*x]^2*(66*(95*A - (47*I)*B)*Cos[c + d*x] + (
-5225*A + (6743*I)*B)*Cos[3*(c + d*x)] + 3995*A*Cos[5*(c + d*x)] - (3641*I)*B*Cos[5*(c + d*x)] + (84810*I)*A*S
in[c + d*x] + 84414*B*Sin[c + d*x] - (42185*I)*A*Sin[3*(c + d*x)] - 43703*B*Sin[3*(c + d*x)] + (10925*I)*A*Sin
[5*(c + d*x)] + 10571*B*Sin[5*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]])/(27720*d*Tan[c + d*x]^(5/2))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 975 vs. \(2 (266 ) = 532\).
time = 0.12, size = 976, normalized size = 3.02 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(13/2),x,method=_RETURNVERBOSE)

[Out]

-1/3465/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(11/2)*(17336*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^5*(a*t
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+6930*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a
)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^6+3465*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^6+5240*A*(I*a)^(1/2)*(-I*
a)^(1/2)*tan(d*x+c)^4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+17240*I*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^5*(a
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+13860*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(
I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^6-3000*I*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3*(a*tan(d
*x+c)*(1+I*tan(d*x+c)))^(1/2)-3465*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^6-3036*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3*(a
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+2090*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+
c)))^(1/2)+6930*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(
-I*a)^(1/2)*a*tan(d*x+c)^6-2120*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+
1610*I*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-13860*I*B*ln(1/2*(2*I*a*tan
(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^6-5192*I
*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+770*B*(I*a)^(1/2)*(-I*a)^(1/2)*
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+630*A*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c))
)^(1/2))/(I*a)^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(13/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 771 vs. \(2 (249) = 498\).
time = 0.54, size = 771, normalized size = 2.39 \begin {gather*} \frac {2 \, {\left (3465 \, \sqrt {2} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{5}}{d^{2}}} {\left (d e^{\left (12 i \, d x + 12 i \, c\right )} - 6 \, d e^{\left (10 i \, d x + 10 i \, c\right )} + 15 \, d e^{\left (8 i \, d x + 8 i \, c\right )} - 20 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 15 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 6 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (i \, \sqrt {2} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (-i \, A - B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, A - B\right )} a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 3465 \, \sqrt {2} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{5}}{d^{2}}} {\left (d e^{\left (12 i \, d x + 12 i \, c\right )} - 6 \, d e^{\left (10 i \, d x + 10 i \, c\right )} + 15 \, d e^{\left (8 i \, d x + 8 i \, c\right )} - 20 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 15 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 6 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (-i \, \sqrt {2} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (-i \, A - B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, A - B\right )} a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) + 2 \, \sqrt {2} {\left (2 \, {\left (3730 \, A - 3553 i \, B\right )} a^{2} e^{\left (13 i \, d x + 13 i \, c\right )} - 9 \, {\left (1805 \, A - 2013 i \, B\right )} a^{2} e^{\left (11 i \, d x + 11 i \, c\right )} + 55 \, {\left (397 \, A - 337 i \, B\right )} a^{2} e^{\left (9 i \, d x + 9 i \, c\right )} + 66 \, {\left (95 \, A - 47 i \, B\right )} a^{2} e^{\left (7 i \, d x + 7 i \, c\right )} - 1386 \, {\left (15 \, A - 16 i \, B\right )} a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} + 15015 \, {\left (A - i \, B\right )} a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - 3465 \, {\left (A - i \, B\right )} a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{3465 \, {\left (d e^{\left (12 i \, d x + 12 i \, c\right )} - 6 \, d e^{\left (10 i \, d x + 10 i \, c\right )} + 15 \, d e^{\left (8 i \, d x + 8 i \, c\right )} - 20 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 15 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 6 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(13/2),x, algorithm="fricas")

[Out]

2/3465*(3465*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*(d*e^(12*I*d*x + 12*I*c) - 6*d*e^(10*I*d*x + 10*I*
c) + 15*d*e^(8*I*d*x + 8*I*c) - 20*d*e^(6*I*d*x + 6*I*c) + 15*d*e^(4*I*d*x + 4*I*c) - 6*d*e^(2*I*d*x + 2*I*c)
+ d)*log((I*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*((-I*A - B)*a^2*e^(2*I*
d*x + 2*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x
 + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) - 3465*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*(d*e
^(12*I*d*x + 12*I*c) - 6*d*e^(10*I*d*x + 10*I*c) + 15*d*e^(8*I*d*x + 8*I*c) - 20*d*e^(6*I*d*x + 6*I*c) + 15*d*
e^(4*I*d*x + 4*I*c) - 6*d*e^(2*I*d*x + 2*I*c) + d)*log((-I*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*d*e^
(I*d*x + I*c) + sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)
)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) + 2*sqrt(2)
*(2*(3730*A - 3553*I*B)*a^2*e^(13*I*d*x + 13*I*c) - 9*(1805*A - 2013*I*B)*a^2*e^(11*I*d*x + 11*I*c) + 55*(397*
A - 337*I*B)*a^2*e^(9*I*d*x + 9*I*c) + 66*(95*A - 47*I*B)*a^2*e^(7*I*d*x + 7*I*c) - 1386*(15*A - 16*I*B)*a^2*e
^(5*I*d*x + 5*I*c) + 15015*(A - I*B)*a^2*e^(3*I*d*x + 3*I*c) - 3465*(A - I*B)*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(
2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(12*I*d*x + 12*I*c)
- 6*d*e^(10*I*d*x + 10*I*c) + 15*d*e^(8*I*d*x + 8*I*c) - 20*d*e^(6*I*d*x + 6*I*c) + 15*d*e^(4*I*d*x + 4*I*c) -
 6*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(13/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(13/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Non regu
lar value [

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{13/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(13/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(13/2), x)

________________________________________________________________________________________